Harmonization and the Worst Scanner Syndrome

01/15/2021 ∙ by Daniel Moyer, et al. ∙ 0

We show that for a wide class of harmonization/domain-invariance schemes several undesirable properties are unavoidable. If a predictive machine is made invariant to a set of domains, the accuracy of the output predictions (as measured by mutual information) is limited by the domain with the least amount of information to begin with. If a real label value is highly informative about the source domain, it cannot be accurately predicted by an invariant predictor. These results are simple and intuitive, but we believe that it is beneficial to state them for medical imaging harmonization.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.