Hardness of Metric Dimension in Graphs of Constant Treewidth
The Metric Dimension problem asks for a minimum-sized resolving set in a given (unweighted, undirected) graph G. Here, a set S ⊆ V(G) is resolving if no two distinct vertices of G have the same distance vector to S. The complexity of Metric Dimension in graphs of bounded treewidth remained elusive in the past years. Recently, Bonnet and Purohit [IPEC 2019] showed that the problem is W[1]-hard under treewidth parameterization. In this work, we strengthen their lower bound to show that Metric Dimension is NP-hard in graphs of treewidth 24.
READ FULL TEXT