H^1-norm error estimate for a nonstandard finite element approximation of second-order linear elliptic PDEs in non-divergence form

09/30/2019
by   Xiaobing Feng, et al.
0

This paper establishes the optimal H^1-norm error estimate for a nonstandard finite element method for approximating H^2 strong solutions of second order linear elliptic PDEs in non-divergence form with continuous coefficients. To circumvent the difficulty of lacking an effective duality argument for this class of PDEs, a new analysis technique is introduced; the crux of it is to establish an H^1-norm stability estimate for the finite element approximation operator which mimics a similar estimate for the underlying PDE operator recently established by the authors and its proof is based on a freezing coefficient technique and a topological argument. Moreover, both the H^1-norm stability and error estimate also hold for the linear finite element method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro