Gym-saturation: an OpenAI Gym environment for saturation provers

03/09/2022
by   Boris Shminke, et al.
0

`gym-saturation` is an OpenAI Gym environment for reinforcement learning (RL) agents capable of proving theorems. Currently, only theorems written in a formal language of the Thousands of Problems for Theorem Provers (TPTP) library in clausal normal form (CNF) are supported. `gym-saturation` implements the 'given clause' algorithm (similar to the one used in Vampire and E Prover). Being written in Python, `gym-saturation` was inspired by PyRes. In contrast to the monolithic architecture of a typical Automated Theorem Prover (ATP), `gym-saturation` gives different agents opportunities to select clauses themselves and train from their experience. Combined with a particular agent, `gym-saturation` can work as an ATP. Even with a non trained agent based on heuristics, `gym-saturation` can find refutations for 688 (of 8257) CNF problems from TPTP v7.5.0.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro