GTM: Gray Temporal Model for Video Recognition

10/20/2021
by   Yanping Zhang, et al.
0

Data input modality plays an important role in video action recognition. Normally, there are three types of input: RGB, flow stream and compressed data. In this paper, we proposed a new input modality: gray stream. Specifically, taken the stacked consecutive 3 gray images as input, which is the same size of RGB, can not only skip the conversion process from video decoding data to RGB, but also improve the spatio-temporal modeling ability at zero computation and zero parameters. Meanwhile, we proposed a 1D Identity Channel-wise Spatio-temporal Convolution(1D-ICSC) which captures the temporal relationship at channel-feature level within a controllable computation budget(by parameters G R). Finally, we confirm its effectiveness and efficiency on several action recognition benchmarks, such as Kinetics, Something-Something, HMDB-51 and UCF-101, and achieve impressive results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro