GSoFa: Scalable Sparse LU Symbolic Factorization on GPUs

07/02/2020
by   Anil Gaihre, et al.
0

Decomposing a matrix A into a lower matrix L and an upper matrix U, which is also known as LU decomposition, is an important operation in numerical linear algebra. For a sparse matrix, LU decomposition often introduces more nonzero entries in the L and U factors than the original matrix. Symbolic factorization step is needed to identify the nonzero structures of L and U matrices. Attracted by the enormous potentials of Graphics Processing Units (GPUs), an array of efforts has surged to deploy various steps of LU factorization on GPUs except, to the best of our knowledge, symbolic factorization.This paper introduces GSoFa, a GPU based Symbolic factorization design with the following three optimizations to enable scalable LU symbolic factorization for nonsymmetric pattern sparse matrices on GPUs. First, we introduce a novel fine-grained parallel symbolic factorization algorithm that is well suited for the Single Instruction Multiple Thread (SIMT) architecture of GPUs. Second, we propose multi-source concurrent symbolic factorization to improve the utilization of GPUs with focus on balancing the workload. Third, we introduce a three-pronged optimization to reduce the excessive space requirement faced by multi-source concurrent symbolic factorization. Taken together, this work scales LU symbolic factorization towards 1,000 GPUs with superior performance over the state-of-the-art CPU algorithm.

READ FULL TEXT
research
10/07/2021

A Hybrid Direct-Iterative Method for Solving KKT Linear Systems

We propose a solution strategy for linear systems arising in interior me...
research
09/16/2021

Dr. Top-k: Delegate-Centric Top-k on GPUs

Recent top-k computation efforts explore the possibility of revising var...
research
07/17/2020

EZLDA: Efficient and Scalable LDA on GPUs

LDA is a statistical approach for topic modeling with a wide range of ap...
research
03/03/2017

Decoupled Block-Wise ILU(k) Preconditioner on GPU

This research investigates the implementation mechanism of block-wise IL...
research
02/14/2020

Scalable Neural Methods for Reasoning With a Symbolic Knowledge Base

We describe a novel way of representing a symbolic knowledge base (KB) c...
research
03/14/2018

Efficient Realization of Givens Rotation through Algorithm-Architecture Co-design for Acceleration of QR Factorization

We present efficient realization of Generalized Givens Rotation (GGR) ba...
research
11/29/2021

A theory of meta-factorization

This paper introduces meta-factorization, a theory that describes matrix...

Please sign up or login with your details

Forgot password? Click here to reset