Group Communication with Context Codec for Ultra-Lightweight Source Separation

12/14/2020
by   Yi Luo, et al.
0

Ultra-lightweight model design is an important topic for the deployment of existing speech enhancement and source separation techniques on low-resource platforms. Various lightweight model design paradigms have been proposed in recent years; however, most models still suffer from finding a balance between model size, model complexity, and model performance. In this paper, we propose the group communication with context codec (GC3) design to decrease both model size and complexity without sacrificing the model performance. Group communication splits a high-dimensional feature into groups of low-dimensional features and applies a module to capture the inter-group dependency. A model can then be applied to the groups in parallel with a significantly smaller width. A context codec is applied to decrease the length of a sequential feature, where a context encoder compresses the temporal context of local features into a single feature representing the global characteristics of the context, and a context decoder decompresses the transformed global features back to the context features. Experimental results show that GC3 can achieve on par or better performance than a wide range of baseline architectures with as small as 2.5

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset