Group-based Sparse Representation for Image Restoration

05/14/2014 ∙ by Jian Zhang, et al. ∙ 0

Traditional patch-based sparse representation modeling of natural images usually suffer from two problems. First, it has to solve a large-scale optimization problem with high computational complexity in dictionary learning. Second, each patch is considered independently in dictionary learning and sparse coding, which ignores the relationship among patches, resulting in inaccurate sparse coding coefficients. In this paper, instead of using patch as the basic unit of sparse representation, we exploit the concept of group as the basic unit of sparse representation, which is composed of nonlocal patches with similar structures, and establish a novel sparse representation modeling of natural images, called group-based sparse representation (GSR). The proposed GSR is able to sparsely represent natural images in the domain of group, which enforces the intrinsic local sparsity and nonlocal self-similarity of images simultaneously in a unified framework. Moreover, an effective self-adaptive dictionary learning method for each group with low complexity is designed, rather than dictionary learning from natural images. To make GSR tractable and robust, a split Bregman based technique is developed to solve the proposed GSR-driven minimization problem for image restoration efficiently. Extensive experiments on image inpainting, image deblurring and image compressive sensing recovery manifest that the proposed GSR modeling outperforms many current state-of-the-art schemes in both PSNR and visual perception.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 6

page 17

page 19

page 20

page 23

page 24

page 26

page 28

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.