Grid-based angle-constrained path planning

06/05/2015
by   Konstantin Yakovlev, et al.
0

Square grids are commonly used in robotics and game development as spatial models and well known in AI community heuristic search algorithms (such as A*, JPS, Theta* etc.) are widely used for path planning on grids. A lot of research is concentrated on finding the shortest (in geometrical sense) paths while in many applications finding smooth paths (rather than the shortest ones but containing sharp turns) is preferable. In this paper we study the problem of generating smooth paths and concentrate on angle constrained path planning. We put angle-constrained path planning problem formally and present a new algorithm tailored to solve it - LIAN. We examine LIAN both theoretically and empirically. We show that it is sound and complete (under some restrictions). We also show that LIAN outperforms the analogues when solving numerous path planning tasks within urban outdoor navigation scenarios.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset