DeepAI AI Chat
Log In Sign Up

Green's function based unparameterised multi-dimensional kernel density and likelihood ratio estimator

12/09/2011
by   Peter Kovesarki, et al.
University of Bonn
0

This paper introduces a probability density estimator based on Green's function identities. A density model is constructed under the sole assumption that the probability density is differentiable. The method is implemented as a binary likelihood estimator for classification purposes, so issues such as mis-modeling and overtraining are also discussed. The identity behind the density estimator can be interpreted as a real-valued, non-scalar kernel method which is able to reconstruct differentiable density functions.

READ FULL TEXT

page 1

page 2

page 3

page 4

01/17/2019

Strong Asymptotic Properties of Kernel Smooth Density and Hazard Function Estimation for Right Censoring NA Data

The paper considers kernel estimation of the density function together w...
06/02/2013

RNADE: The real-valued neural autoregressive density-estimator

We introduce RNADE, a new model for joint density estimation of real-val...
07/03/2017

A simple efficient density estimator that enables fast systematic search

This paper introduces a simple and efficient density estimator that enab...
07/12/2020

On the generalization of Tanimoto-type kernels to real valued functions

The Tanimoto kernel (Jaccard index) is a well known tool to describe the...
08/29/2022

Inferring subhalo effective density slopes from strong lensing observations with neural likelihood-ratio estimation

Strong gravitational lensing has emerged as a promising approach for pro...
04/08/2019

Modeling a Hidden Dynamical System Using Energy Minimization and Kernel Density Estimates

In this paper we develop a kernel density estimation (KDE) approach to m...