Greedy Learning of Markov Network Structure

02/08/2012
by   Praneeth Netrapalli, et al.
0

We propose a new yet natural algorithm for learning the graph structure of general discrete graphical models (a.k.a. Markov random fields) from samples. Our algorithm finds the neighborhood of a node by sequentially adding nodes that produce the largest reduction in empirical conditional entropy; it is greedy in the sense that the choice of addition is based only on the reduction achieved at that iteration. Its sequential nature gives it a lower computational complexity as compared to other existing comparison-based techniques, all of which involve exhaustive searches over every node set of a certain size. Our main result characterizes the sample complexity of this procedure, as a function of node degrees, graph size and girth in factor-graph representation. We subsequently specialize this result to the case of Ising models, where we provide a simple transparent characterization of sample complexity as a function of model and graph parameters. For tree graphs, our algorithm is the same as the classical Chow-Liu algorithm, and in that sense can be considered the extension of the same to graphs with cycles.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset