Graph Representation Learning for Merchant Incentive Optimization in Mobile Payment Marketing
Mobile payment such as Alipay has been widely used in our daily lives. To further promote the mobile payment activities, it is important to run marketing campaigns under a limited budget by providing incentives such as coupons, commissions to merchants. As a result, incentive optimization is the key to maximizing the commercial objective of the marketing campaign. With the analyses of online experiments, we found that the transaction network can subtly describe the similarity of merchants' responses to different incentives, which is of great use in the incentive optimization problem. In this paper, we present a graph representation learning method atop of transaction networks for merchant incentive optimization in mobile payment marketing. With limited samples collected from online experiments, our end-to-end method first learns merchant representations based on an attributed transaction networks, then effectively models the correlations between the commercial objectives each merchant may achieve and the incentives under varying treatments. Thus we are able to model the sensitivity to incentive for each merchant, and spend the most budgets on those merchants that show strong sensitivities in the marketing campaign. Extensive offline and online experimental results at Alipay demonstrate the effectiveness of our proposed approach.
READ FULL TEXT