Graph Polish: A Novel Graph Generation Paradigm for Molecular Optimization

08/14/2020
by   Chaojie Ji, et al.
0

Molecular optimization, which transforms a given input molecule X into another Y with desirable properties, is essential in molecular drug discovery. The traditional translating approaches, generating the molecular graphs from scratch by adding some substructures piece by piece, prone to error because of the large set of candidate substructures in a large number of steps to the final target. In this study, we present a novel molecular optimization paradigm, Graph Polish, which changes molecular optimization from the traditional "two-language translating" task into a "single-language polishing" task. The key to this optimization paradigm is to find an optimization center subject to the conditions that the preserved areas around it ought to be maximized and thereafter the removed and added regions should be minimized. We then propose an effective and efficient learning framework T S polish to capture the long-term dependencies in the optimization steps. The T component automatically identifies and annotates the optimization centers and the preservation, removal and addition of some parts of the molecule, and the S component learns these behaviors and applies these actions to a new molecule. Furthermore, the proposed paradigm can offer an intuitive interpretation for each molecular optimization result. Experiments with multiple optimization tasks are conducted on four benchmark datasets. The proposed T S polish approach achieves significant advantage over the five state-of-the-art baseline methods on all the tasks. In addition, extensive studies are conducted to validate the effectiveness, explainability and time saving of the novel optimization paradigm.

READ FULL TEXT

page 4

page 5

page 6

page 7

page 8

page 9

page 10

page 14

research
02/16/2021

Few-Shot Graph Learning for Molecular Property Prediction

The recent success of graph neural networks has significantly boosted mo...
research
11/14/2020

Reinforced Molecular Optimization with Neighborhood-Controlled Grammars

A major challenge in the pharmaceutical industry is to design novel mole...
research
07/18/2023

GraphCL-DTA: a graph contrastive learning with molecular semantics for drug-target binding affinity prediction

Drug-target binding affinity prediction plays an important role in the e...
research
09/29/2022

Improving Molecular Pretraining with Complementary Featurizations

Molecular pretraining, which learns molecular representations over massi...
research
02/17/2022

Knowledge-informed Molecular Learning: A Survey on Paradigm Transfer

Machine learning, especially deep learning, has greatly advanced molecul...
research
09/23/2022

sMolBoxes: Dataflow Model for Molecular Dynamics Exploration

We present sMolBoxes, a dataflow representation for the exploration and ...

Please sign up or login with your details

Forgot password? Click here to reset