Graph Embedding Based Hybrid Social Recommendation System

08/26/2019
by   Vishwas Sathish, et al.
0

Item recommendation tasks are a widely studied topic. Recent developments in deep learning and spectral methods paved a path towards efficient graph embedding techniques. But little research has been done on applying these graph embedding to social graphs for recommendation tasks. This paper focuses at performance of various embedding methods applied on social graphs for the task of item recommendation. Additionally, a hybrid model is proposed wherein chosen embedding models are combined together to give a collective output. We put forward the hypothesis that such a hybrid model would perform better than individual embedding for recommendation task. With recommendation using individual embedding as a baseline, performance for hybrid model for the same task is evaluated and compared. Standard metrics are used for qualitative comparison. It is found that the proposed hybrid model outperforms the baseline.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset