Graph Classification with Recurrent Variational Neural Networks

02/07/2019
by   Edouard Pineau, et al.
0

We address the problem of graph classification based only on structural information. Most standard methods require either the pairwise comparisons of all graphs in the dataset or the extraction of ad-hoc features to perform classification. Those methods respectively raise scalability issues when the number of samples in the dataset is large, and flexibility issues when discriminative information is characterized by exotic features. Recent advances in neural network architectures offer new possibilities for graph analysis in terms of scalability and feature learning. In this paper, we propose a new sequential approach using recurrent neural networks (RNN). Our model sequentially embeds information allowing to model final class membership probabilities. We also propose a regularization based on variational node prediction ending up with better learning and generalization. We experimentally show that our model reaches state-of-the-art classification results on several common molecular datasets. Finally, we perform a qualitative analysis and give some insights about how the joint node prediction helps the model to better classify graphs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset