Gradient Reversal Against Discrimination

07/01/2018 ∙ by Edward Raff, et al. ∙ 0

No methods currently exist for making arbitrary neural networks fair. In this work we introduce GRAD, a new and simplified method to producing fair neural networks that can be used for auto-encoding fair representations or directly with predictive networks. It is easy to implement and add to existing architectures, has only one (insensitive) hyper-parameter, and provides improved individual and group fairness. We use the flexibility of GRAD to demonstrate multi-attribute protection.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.