Gradient Hyperalignment for multi-subject fMRI data alignment

07/07/2018
by   Tonglin Xu, et al.
0

Multi-subject fMRI data analysis is an interesting and challenging problem in human brain decoding studies. The inherent anatomical and functional variability across subjects make it necessary to do both anatomical and functional alignment before classification analysis. Besides, when it comes to big data, time complexity becomes a problem that cannot be ignored. This paper proposes Gradient Hyperalignment (Gradient-HA) as a gradient-based functional alignment method that is suitable for multi-subject fMRI datasets with large amounts of samples and voxels. The advantage of Gradient-HA is that it can solve independence and high dimension problems by using Independent Component Analysis (ICA) and Stochastic Gradient Ascent (SGA). Validation using multi-classification tasks on big data demonstrates that Gradient-HA method has less time complexity and better or comparable performance compared with other state-of-the-art functional alignment methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset