Gradient Boosting on Decision Trees for Mortality Prediction in Transcatheter Aortic Valve Implantation

01/08/2020 ∙ by Marco Mamprin, et al. ∙ 0

Current prognostic risk scores in cardiac surgery are based on statistics and do not yet benefit from machine learning. Statistical predictors are not robust enough to correctly identify patients who would benefit from Transcatheter Aortic Valve Implantation (TAVI). This research aims to create a machine learning model to predict one-year mortality of a patient after TAVI. We adopt a modern gradient boosting on decision trees algorithm, specifically designed for categorical features. In combination with a recent technique for model interpretations, we developed a feature analysis and selection stage, enabling to identify the most important features for the prediction. We base our prediction model on the most relevant features, after interpreting and discussing the feature analysis results with clinical experts. We validated our model on 270 TAVI cases, reaching an AUC of 0.83. Our approach outperforms several widespread prognostic risk scores, such as logistic EuroSCORE II, the STS risk score and the TAVI2-score, which are broadly adopted by cardiologists worldwide.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 2

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.