GLOSS: Generative Latent Optimization of Sentence Representations

07/15/2019
by   Sidak Pal Singh, et al.
0

We propose a method to learn unsupervised sentence representations in a non-compositional manner based on Generative Latent Optimization. Our approach does not impose any assumptions on how words are to be combined into a sentence representation. We discuss a simple Bag of Words model as well as a variant that models word positions. Both are trained to reconstruct the sentence based on a latent code and our model can be used to generate text. Experiments show large improvements over the related Paragraph Vectors. Compared to uSIF, we achieve a relative improvement of 5 method performs competitively to Sent2vec while trained on 30 times less data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro