GLOD: Gaussian Likelihood Out of Distribution Detector

08/16/2020 ∙ by Guy Amit, et al. ∙ 0

Discriminative deep neural networks (DNNs) do well at classifying input associated with the classes they have been trained on. However, out-of-distribution (OOD) input poses a great challenge to such models and consequently represents a major risk when these models are used in safety-critical systems. In the last two years, extensive research has been performed in the domain of OOD detection. This research has relied mainly on training the model with OOD data or using an auxiliary (external) model for OOD detection. Such methods have limited capability in detecting OOD samples and may not be applicable in many real world use cases. In this paper, we propose GLOD - Gaussian likelihood out of distribution detector - an extended DNN classifier capable of efficiently detecting OOD samples without relying on OOD training data or an external detection model. GLOD uses a layer that models the Gaussian density function of the trained classes. The layer outputs are used to estimate a Log-Likelihood Ratio which is employed to detect OOD samples. We evaluate GLOD's detection performance on three datasets: SVHN, CIFAR-10, and CIFAR-100. Our results show that GLOD surpasses state-of-the-art OOD detection techniques in detection performance by a large margin.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.