Globular weak ω-categories as models of a type theory

06/08/2021
by   Thibaut Benjamin, et al.
0

We study the dependent type theory CaTT, introduced by Finster and Mimram, which presents the theory of weak ω-categories, following the idea that type theories can be considered as presentations of generalized algebraic theories. Our main contribution is a formal proof that the models of this type theory correspond precisely to weak ω-categories, as defined by Maltsiniotis, by generalizing a definition proposed by Grothendieck for weak ω-groupoids: Those are defined as suitable presheaves over a cat-coherator, which is a category encoding structure expected to be found in an ω-category. This comparison is established by proving the initiality conjecture for the type theory CaTT, in a way which suggests the possible generalization to a nerve theorem for a certain class of dependent type theories

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro