Global Performance Guarantees for Neural Network Models of AC Power Flow

11/14/2022
by   Samuel Chevalier, et al.
0

Machine learning can generate black-box surrogate models which are both extremely fast and highly accurate. Rigorously verifying the accuracy of these black-box models, however, is computationally challenging. When it comes to power systems, learning AC power flow is the cornerstone of any machine learning surrogate model wishing to drastically accelerate computations, whether it is for optimization, control, or dynamics. This paper develops for the first time, to our knowledge, a tractable neural network verification procedure which incorporates the ground truth of the non-linear AC power flow equations to determine worst-case neural network performance. Our approach, termed Sequential Targeted Tightening (STT), leverages a loosely convexified reformulation of the original verification problem, which is a mixed integer quadratic program (MIQP). Using the sequential addition of targeted cuts, we iteratively tighten our formulation until either the solution is sufficiently tight or a satisfactory performance guarantee has been generated. After learning neural network models of the 14, 57, 118, and 200-bus PGLib test cases, we compare the performance guarantees generated by our STT procedure with ones generated by a state-of-the-art MIQP solver, Gurobi 9.5. We show that STT often generates performance guarantees which are orders of magnitude tighter than the MIQP upper bound.

READ FULL TEXT
research
03/23/2023

Enriching Neural Network Training Dataset to Improve Worst-Case Performance Guarantees

Machine learning algorithms, especially Neural Networks (NNs), are a val...
research
12/21/2022

Minimizing Worst-Case Violations of Neural Networks

Machine learning (ML) algorithms are remarkably good at approximating co...
research
06/18/2023

GPU-Accelerated Verification of Machine Learning Models for Power Systems

Computational tools for rigorously verifying the performance of large-sc...
research
05/07/2021

FVM Network to Reduce Computational Cost of CFD Simulation

Despite the rapid growth of CPU performance, the computational cost to s...
research
10/03/2019

Verification of Neural Network Behaviour: Formal Guarantees for Power System Applications

This paper presents for the first time, to our knowledge, a framework fo...
research
10/06/2021

Physics-Informed Neural Networks for AC Optimal Power Flow

This paper introduces, for the first time to our knowledge, physics-info...
research
12/02/2018

Verifying Fairness Properties via Concentration

As machine learning systems are increasingly used to make real world leg...

Please sign up or login with your details

Forgot password? Click here to reset