Global Optimization of Energy Efficiency in IRS-Aided Communication Systems via Robust IRS-Element Activation

10/29/2022
by   Christos N. Efrem, et al.
0

In this paper, we study an intelligent reflecting surface (IRS) assisted communication system with single-antenna transmitter and receiver, under imperfect channel state information (CSI). More specifically, we deal with the robust selection of binary (on/off) states of the IRS elements in order to maximize the worst-case energy efficiency (EE), given a bounded CSI uncertainty, while satisfying a minimum signal-to-noise ratio (SNR). The IRS phase shifts are adjusted so as to maximize the ideal SNR (i.e., without CSI error), based only on the estimated channels. First, we derive a closed-form expression of the worst-case SNR, and then formulate the robust (discrete) optimization problem. Moreover, we design and analyze a dynamic programming (DP) algorithm that is theoretically guaranteed to achieve the global maximum with polynomial complexity O(L log L), where L is the number of IRS elements. Finally, numerical simulations confirm the theoretical results. In particular, the proposed algorithm shows identical performance with the exhaustive search, and significantly outperforms a baseline scheme, namely, the activation of all IRS elements.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro