Global Flood Prediction: a Multimodal Machine Learning Approach

01/29/2023
by   Cynthia Zeng, et al.
0

Flooding is one of the most destructive and costly natural disasters, and climate changes would further increase risks globally. This work presents a novel multimodal machine learning approach for multi-year global flood risk prediction, combining geographical information and historical natural disaster dataset. Our multimodal framework employs state-of-the-art processing techniques to extract embeddings from each data modality, including text-based geographical data and tabular-based time-series data. Experiments demonstrate that a multimodal approach, that is combining text and statistical data, outperforms a single-modality approach. Our most advanced architecture, employing embeddings extracted using transfer learning upon DistilBert model, achieves 75%-77% ROCAUC score in predicting the next 1-5 year flooding event in historically flooded locations. This work demonstrates the potentials of using machine learning for long-term planning in natural disaster management.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset