Global Convergence and Variance-Reduced Optimization for a Class of Nonconvex-Nonconcave Minimax Problems

02/22/2020 ∙ by Junchi Yang, et al. ∙ 0

Nonconvex minimax problems appear frequently in emerging machine learning applications, such as generative adversarial networks and adversarial learning. Simple algorithms such as the gradient descent ascent (GDA) are the common practice for solving these nonconvex games and receive lots of empirical success. Yet, it is known that these vanilla GDA algorithms with constant step size can potentially diverge even in the convex setting. In this work, we show that for a subclass of nonconvex-nonconcave objectives satisfying a so-called two-sided Polyak-Łojasiewicz inequality, the alternating gradient descent ascent (AGDA) algorithm converges globally at a linear rate and the stochastic AGDA achieves a sublinear rate. We further develop a variance reduced algorithm that attains a provably faster rate than AGDA when the problem has the finite-sum structure.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.