Global and country-specific mainstreaminess measures: Definitions, analysis, and usage for improving personalized music recommendation systems
Popularity-based approaches are widely adopted in music recommendation systems, both in industry and research. However, as the popularity distribution of music items typically is a long-tail distribution, popularity-based approaches to music recommendation fall short in satisfying listeners that have specialized music. The contribution of this article is three-fold. We provide several quantitative measures describing the proximity of a user's music preference to the music mainstream. We define the measures at two levels: relating a listener's music preferences to the global music preferences of all users, or relating them to music preferences of the user's country. Moreover, we adopt a distribution-based and a rank-based approach as means to decrease bias towards the head of the long-tail distribution. We analyze differences between countries in terms of their level of mainstreaminess, uncover both positive and negative outliers (substantially higher and lower country-specific popularity, respectively, compared to the global mainstream), and investigate differences between countries in terms of listening preferences related to popular music artists. We use the standardized LFM-1b dataset, from which we analyze about 8 million listening events shared by about 53,000 users (from 47 countries) of the music streaming platform Last.fm. We show that there are substantial country-specific differences in listeners' music consumption behavior with respect to the most popular artists listened to. We conduct rating prediction experiments in which we tailor recommendations to a user's level of preference for the music mainstream using the proposed 6 mainstreaminess measures. Results suggest that, in terms of rating prediction accuracy, each of the presented mainstreaminess definitions has its merits.
READ FULL TEXT