GiT: Graph Interactive Transformer for Vehicle Re-identification

07/12/2021 ∙ by Fei Shen, et al. ∙ 0

Transformers are more and more popular in computer vision, which treat an image as a sequence of patches and learn robust global features from the sequence. However, a suitable vehicle re-identification method should consider both robust global features and discriminative local features. In this paper, we propose a graph interactive transformer (GiT) for vehicle re-identification. On the whole, we stack multiple GiT blocks to build a competitive vehicle re-identification model, in where each GiT block employs a novel local correlation graph (LCG) module to extract discriminative local features within patches and uses a transformer layer to extract robust global features among patches. In detail, in the current GiT block, the LCG module learns local features from local and global features resulting from the LCG module and transformer layer of the previous GiT block. Similarly, the transformer layer learns global features from the global features generated by the transformer layer of the previous GiT block and the new local features outputted via the LCG module of the current GiT block. Therefore, LCG modules and transformer layers are in a coupled status, bringing effective cooperation between local and global features. This is the first work to combine graphs and transformers for vehicle re-identification to the best of our knowledge. Extensive experiments on three large-scale vehicle re-identification datasets demonstrate that our method is superior to state-of-the-art approaches. The code will be available soon.



There are no comments yet.


page 1

page 3

page 8

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.