DeepAI AI Chat
Log In Sign Up

GiraffeDet: A Heavy-Neck Paradigm for Object Detection

02/09/2022
by   Yiqi Jiang, et al.
Alibaba Group
8

In conventional object detection frameworks, a backbone body inherited from image recognition models extracts deep latent features and then a neck module fuses these latent features to capture information at different scales. As the resolution in object detection is much larger than in image recognition, the computational cost of the backbone often dominates the total inference cost. This heavy-backbone design paradigm is mostly due to the historical legacy when transferring image recognition models to object detection rather than an end-to-end optimized design for object detection. In this work, we show that such paradigm indeed leads to sub-optimal object detection models. To this end, we propose a novel heavy-neck paradigm, GiraffeDet, a giraffe-like network for efficient object detection. The GiraffeDet uses an extremely lightweight backbone and a very deep and large neck module which encourages dense information exchange among different spatial scales as well as different levels of latent semantics simultaneously. This design paradigm allows detectors to process the high-level semantic information and low-level spatial information at the same priority even in the early stage of the network, making it more effective in detection tasks. Numerical evaluations on multiple popular object detection benchmarks show that GiraffeDet consistently outperforms previous SOTA models across a wide spectrum of resource constraints.

READ FULL TEXT
03/28/2019

ThunderNet: Towards Real-time Generic Object Detection

Real-time generic object detection on mobile platforms is a crucial but ...
12/14/2020

Decoupled Self Attention for Accurate One Stage Object Detection

As the scale of object detection dataset is smaller than that of image r...
04/17/2018

DetNet: A Backbone network for Object Detection

Recent CNN based object detectors, no matter one-stage methods like YOLO...
11/22/2021

Conifer Seedling Detection in UAV-Imagery with RGB-Depth Information

Monitoring of reforestation is currently being considerably streamlined ...
04/01/2022

Proper Reuse of Image Classification Features Improves Object Detection

A common practice in transfer learning is to initialize the downstream m...
06/02/2022

SparseDet: Towards End-to-End 3D Object Detection

In this paper, we propose SparseDet for end-to-end 3D object detection f...
07/29/2018

Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages

Object detection has made great progress in the past few years along wit...