Gigamachine: incremental machine learning on desktop computers

09/08/2017
by   Eray Özkural, et al.
0

We present a concrete design for Solomonoff's incremental machine learning system suitable for desktop computers. We use R5RS Scheme and its standard library with a few omissions as the reference machine. We introduce a Levin Search variant based on a stochastic Context Free Grammar together with new update algorithms that use the same grammar as a guiding probability distribution for incremental machine learning. The updates include adjusting production probabilities, re-using previous solutions, learning programming idioms and discovery of frequent subprograms. The issues of extending the a priori probability distribution and bootstrapping are discussed. We have implemented a good portion of the proposed algorithms. Experiments with toy problems show that the update algorithms work as expected.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset