DeepAI AI Chat
Log In Sign Up

Getting Fairness Right: Towards a Toolbox for Practitioners

03/15/2020
by   Boris Ruf, et al.
AXA
0

The potential risk of AI systems unintentionally embedding and reproducing bias has attracted the attention of machine learning practitioners and society at large. As policy makers are willing to set the standards of algorithms and AI techniques, the issue on how to refine existing regulation, in order to enforce that decisions made by automated systems are fair and non-discriminatory, is again critical. Meanwhile, researchers have demonstrated that the various existing metrics for fairness are statistically mutually exclusive and the right choice mostly depends on the use case and the definition of fairness. Recognizing that the solutions for implementing fair AI are not purely mathematical but require the commitments of the stakeholders to define the desired nature of fairness, this paper proposes to draft a toolbox which helps practitioners to ensure fair AI practices. Based on the nature of the application and the available training data, but also on legal requirements and ethical, philosophical and cultural dimensions, the toolbox aims to identify the most appropriate fairness objective. This approach attempts to structure the complex landscape of fairness metrics and, therefore, makes the different available options more accessible to non-technical people. In the proven absence of a silver bullet solution for fair AI, this toolbox intends to produce the fairest AI systems possible with respect to their local context.

READ FULL TEXT
05/03/2021

Explaining how your AI system is fair

To implement fair machine learning in a sustainable way, choosing the ri...
02/16/2021

Towards the Right Kind of Fairness in AI

Fairness is a concept of justice. Various definitions exist, some of the...
04/06/2021

The Myth of Complete AI-Fairness

The idea of fairness and justice has long and deep roots in Western civi...
12/21/2022

A Seven-Layer Model for Standardising AI Fairness Assessment

Problem statement: Standardisation of AI fairness rules and benchmarks i...
09/14/2020

Active Fairness Instead of Unawareness

The possible risk that AI systems could promote discrimination by reprod...
06/25/2021

Fairness Deconstructed: A Sociotechnical View of 'Fair' Algorithms in Criminal Justice

Early studies of risk assessment algorithms used in criminal justice rev...