MultitaskAIS
A multi-task model for vessel monitoring using AIS data streams
view repo
Representing maritime traffic patterns and detecting anomalies from them are key to vessel monitoring and maritime situational awareness. We propose a novel approach-referred to as GeoTrackNet-for maritime anomaly detection from AIS data streams. Our model exploits state-of-the-art neural network schemes to learn a probabilistic representation of AIS tracks, then uses a contrario detection to detect abnormal events. The neural network helps us capture complex and heterogeneous patterns in vessels' behaviors, while the a contrario detection takes into account the fact that the learned distribution may be location-dependent. Experiments on a real AIS dataset comprising more than 4.2 million AIS messages demonstrate the relevance of the proposed method. Keywords: AIS, maritime surveillance, deep learning, anomaly detection, variational recurrent neural networks, a contrario detection.
READ FULL TEXT