Geophysical Inversion and Optimal Transport

04/29/2022
by   Malcolm Sambridge, et al.
0

We propose a new approach to measuring the agreement between two oscillatory time series, such as seismic waveforms, and demonstrate that it can be employed effectively in inverse problems. Our approach is based on Optimal Transport theory and the Wasserstein distance, with a novel transformation of the time series to ensure that necessary normalisation and positivity conditions are met. Our measure is differentiable, and can readily be employed within an optimization framework. We demonstrate performance with a variety of synthetic examples, including seismic source inversion, and observe substantially better convergence properties than achieved with conventional L_2 misfits. We also briefly discuss the relationship between Optimal Transport and Bayesian inference.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro