Geometric deep learning for computational mechanics Part I: Anisotropic Hyperelasticity

01/08/2020
by   Nikolaos Vlassis, et al.
0

This paper is the first attempt to use geometric deep learning and Sobolev training to incorporate non-Euclidean microstructural data such that anisotropic hyperelastic material machine learning models can be trained in the finite deformation range. While traditional hyperelasticity models often incorporate homogenized measures of microstructural attributes, such as porosity averaged orientation of constitutes, these measures cannot reflect the topological structures of the attributes. We fill this knowledge gap by introducing the concept of weighted graph as a new mean to store topological information, such as the connectivity of anisotropic grains in assembles. Then, by leveraging a graph convolutional deep neural network architecture in the spectral domain, we introduce a mechanism to incorporate these non-Euclidean weighted graph data directly as input for training and for predicting the elastic responses of materials with complex microstructures. To ensure smoothness and prevent non-convexity of the trained stored energy functional, we introduce a Sobolev training technique for neural networks such that stress measure is obtained implicitly from taking directional derivatives of the trained energy functional. By optimizing the neural network to approximate both the energy functional output and the stress measure, we introduce a training procedure the improves efficiency and generalize the learned energy functional for different microstructures. The trained hybrid neural network model is then used to generate new stored energy functional for unseen microstructures in a parametric study to predict the influence of elastic anisotropy on the nucleation and propagation of fracture in the brittle regime.

READ FULL TEXT

page 19

page 29

page 30

research
01/23/2021

Predicting the Mechanical Properties of Fibrin Using Neural Networks Trained on Discrete Fiber Network Data

Fibrin is a structural protein key for processes such as wound healing a...
research
01/04/2020

A phase field model for cohesive fracture in micropolar continua

While crack nucleation and propagation in the brittle or quasi-brittle r...
research
08/27/2018

Deep Learning for Stress Field Prediction Using Convolutional Neural Networks

This research presents a deep learning based approach to predict stress ...
research
10/14/2018

Learning to fail: Predicting fracture evolution in brittle materials using recurrent graph convolutional neural networks

Understanding dynamic fracture propagation is essential to predicting ho...
research
11/15/2018

Predicting thermoelectric properties from crystal graphs and material descriptors - first application for functional materials

We introduce the use of Crystal Graph Convolutional Neural Networks (CGC...
research
10/12/2020

A Physics-Guided Neural Network Framework for Elastic Plates: Comparison of Governing Equations-Based and Energy-Based Approaches

One of the obstacles hindering the scaling-up of the initial successes o...

Please sign up or login with your details

Forgot password? Click here to reset