Geodesic Properties of a Generalized Wasserstein Embedding for Time Series Analysis

06/04/2022
by   Shiying Li, et al.
7

Transport-based metrics and related embeddings (transforms) have recently been used to model signal classes where nonlinear structures or variations are present. In this paper, we study the geodesic properties of time series data with a generalized Wasserstein metric and the geometry related to their signed cumulative distribution transforms in the embedding space. Moreover, we show how understanding such geometric characteristics can provide added interpretability to certain time series classifiers, and be an inspiration for more robust classifiers.

READ FULL TEXT

page 1

page 2

page 3

page 4

10/10/2019

Time series classification for varying length series

Research into time series classification has tended to focus on the case...
08/03/2013

Nonlinear Time Series Modeling: A Unified Perspective, Algorithm, and Application

A new comprehensive approach to nonlinear time series analysis and model...
12/11/2019

The Wasserstein-Fourier Distance for Stationary Time Series

We introduce a novel framework for analysing stationary time series base...
10/23/2019

Wasserstein total variation filtering

In this paper, we expand upon the theory of trend filtering by introduci...
02/25/2020

Geometric Fusion via Joint Delay Embeddings

We introduce geometric and topological methods to develop a new framewor...
07/10/2017

Composition Properties of Inferential Privacy for Time-Series Data

With the proliferation of mobile devices and the internet of things, dev...
02/17/2021

Analysis of EEG data using complex geometric structurization

Electroencephalogram (EEG) is a common tool used to understand brain act...

Please sign up or login with your details

Forgot password? Click here to reset