Genetic cellular neural networks for generating three-dimensional geometry

03/28/2016
by   Hugo Martay, et al.
0

There are a number of ways to procedurally generate interesting three-dimensional shapes, and a method where a cellular neural network is combined with a mesh growth algorithm is presented here. The aim is to create a shape from a genetic code in such a way that a crude search can find interesting shapes. Identical neural networks are placed at each vertex of a mesh which can communicate with neural networks on neighboring vertices. The output of the neural networks determine how the mesh grows, allowing interesting shapes to be produced emergently, mimicking some of the complexity of biological organism development. Since the neural networks' parameters can be freely mutated, the approach is amenable for use in a genetic algorithm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro