Generative Multi-Functional Meta-Atom and Metasurface Design Networks

by   Sensong An, et al.

Metasurfaces are being widely investigated and adopted for their promising performances in manipulating optical wavefronts and their potential for integrating multi-functionalities into one flat optical device. A key challenge in metasurface design is the non-intuitive design process that produces models and patterns from specific design requirements (commonly electromagnetic responses). A complete exploration of all design spaces can produce optimal designs but is unrealistic considering the massive amount of computation power required to explore large parameter spaces. Meanwhile, machine learning techniques, especially generative adversarial networks, have proven to be an effective solution to non-intuitive design tasks. In this paper, we present a novel conditional generative network that can generate meta-atom/metasurface designs based on different performance requirements. Compared to conventional trial-and-error or iterative optimization design methods, this new methodology is capable of producing on-demand freeform designs on a one-time calculation basis. More importantly, an increased complexity of design goals doesn't introduce further complexity into the network structure or the training process, which makes this approach suitable for multi-functional device designs. Compared to previous deep learning-based metasurface approaches, our network structure is extremely robust to train and converge, and is readily expanded to many multi-functional metasurface devices, including metasurface filters, lenses and holograms.


page 5

page 6

page 7

page 8

page 10

page 11

page 13

page 14


A Novel Modeling Approach for All-Dielectric Metasurfaces Using Deep Neural Networks

Metasurfaces have become a promising means for manipulating optical wave...

A Systematic Approach For Kinematic Design Of Upper Limb Rehabilitation Exoskeletons

Kinematic structure of an exoskeleton is the most fundamental block of i...

A Freeform Dielectric Metasurface Modeling Approach Based on Deep Neural Networks

Metasurfaces have shown promising potentials in shaping optical wavefron...

Multifunctional Meta-Optic Systems: Inversely Designed with Artificial Intelligence

Flat optics foresees a new era of ultra-compact optical devices, where m...

Improving Fabrication Fidelity of Integrated Nanophotonic Devices Using Deep Learning

Next-generation integrated nanophotonic device designs leverage advanced...

Data-driven metasurface discovery

A long-standing challenge with metasurface design is identifying computa...

Functional Generative Design of Mechanisms with Recurrent Neural Networks and Novelty Search

Consumer-grade 3D printers have made it easier to fabricate aesthetic ob...

Please sign up or login with your details

Forgot password? Click here to reset