Generative Models for Automatic Chemical Design

07/02/2019
by   Daniel Schwalbe-Koda, et al.
0

Materials discovery is decisive for tackling urgent challenges related to energy, the environment, health care and many others. In chemistry, conventional methodologies for innovation usually rely on expensive and incremental strategies to optimize properties from molecular structures. On the other hand, inverse approaches map properties to structures, thus expediting the design of novel useful compounds. In this chapter, we examine the way in which current deep generative models are addressing the inverse chemical discovery paradigm. We begin by revisiting early inverse design algorithms. Then, we introduce generative models for molecular systems and categorize them according to their architecture and molecular representation. Using this classification, we review the evolution and performance of important molecular generation schemes reported in the literature. Finally, we conclude highlighting the prospects and challenges of generative models as cutting edge tools in materials discovery.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset