Generative Hierarchical Features from Synthesizing Images
Generative Adversarial Networks (GANs) have recently advanced image synthesis by learning the underlying distribution of observed data in an unsupervised manner. However, how the features trained from solving the task of image synthesis are applicable to visual tasks remains seldom explored. In this work, we show that learning to synthesize images is able to bring remarkable hierarchical visual features that are generalizable across a wide range of visual tasks. Specifically, we consider the pre-trained StyleGAN generator as a learned loss function and utilize its layer-wise disentangled representation to train a novel hierarchical encoder. As a result, the visual feature produced by our encoder, termed as Generative Hierarchical Feature (GH-Feat), has compelling discriminative and disentangled properties, facilitating a range of both discriminative and generative tasks. Extensive experiments on face verification, landmark detection, layout prediction, transfer learning, style mixing, and image editing show the appealing performance of the GH-Feat learned from synthesizing images, outperforming existing unsupervised feature learning methods.
READ FULL TEXT