Generative Adversarial Networks (GAN) Powered Fast Magnetic Resonance Imaging – Mini Review, Comparison and Perspectives

05/04/2021 ∙ by Guang Yang, et al. ∙ 28

Magnetic Resonance Imaging (MRI) is a vital component of medical imaging. When compared to other image modalities, it has advantages such as the absence of radiation, superior soft tissue contrast, and complementary multiple sequence information. However, one drawback of MRI is its comparatively slow scanning and reconstruction compared to other image modalities, limiting its usage in some clinical applications when imaging time is critical. Traditional compressive sensing based MRI (CS-MRI) reconstruction can speed up MRI acquisition, but suffers from a long iterative process and noise-induced artefacts. Recently, Deep Neural Networks (DNNs) have been used in sparse MRI reconstruction models to recreate relatively high-quality images from heavily undersampled k-space data, allowing for much faster MRI scanning. However, there are still some hurdles to tackle. For example, directly training DNNs based on L1/L2 distance to the target fully sampled images could result in blurry reconstruction because L1/L2 loss can only enforce overall image or patch similarity and does not take into account local information such as anatomical sharpness. It is also hard to preserve fine image details while maintaining a natural appearance. More recently, Generative Adversarial Networks (GAN) based methods are proposed to solve fast MRI with enhanced image perceptual quality. The encoder obtains a latent space for the undersampling image, and the image is reconstructed by the decoder using the GAN loss. In this chapter, we review the GAN powered fast MRI methods with a comparative study on various anatomical datasets to demonstrate the generalisability and robustness of this kind of fast MRI while providing future perspectives.



There are no comments yet.


page 15

page 16

page 21

page 22

page 25

page 26

page 27

page 28

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.