Generative Adversarial Imitation from Observation

07/17/2018
by   Faraz Torabi, et al.
0

Imitation from observation (IfO) is the problem of learning directly from state-only demonstrations without having access to the demonstrator's actions. The lack of action information both distinguishes IfO from most of the literature in imitation learning, and also sets it apart as a method that may enable agents to learn from large set of previously inapplicable resources such as internet videos. In this paper, we propose both a general framework for IfO approaches and propose a new IfO approach based on generative adversarial networks called generative adversarial imitation from observation (GAIfO). We demonstrate that this approach performs comparably to classical imitation learning approaches (which have access to the demonstrator's actions) and significantly outperforms existing imitation from observation methods in high-dimensional simulation environments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset