Generative Adversarial Examples

05/21/2018
by   Yang Song, et al.
8

Adversarial examples are typically constructed by perturbing an existing data point, and current defense methods are focused on guarding against this type of attack. In this paper, we propose a new class of adversarial examples that are synthesized entirely from scratch using a conditional generative model. We first train an Auxiliary Classifier Generative Adversarial Network (AC-GAN) to model the class-conditional distribution over inputs. Then, conditioned on a desired class, we search over the AC-GAN latent space to find images that are likely under the generative model and are misclassified by a target classifier. We demonstrate through human evaluation that this new kind of adversarial inputs, which we call Generative Adversarial Examples, are legitimate and belong to the desired class. Our empirical results on the MNIST, SVHN, and CelebA datasets show that generative adversarial examples can easily bypass strong adversarial training and certified defense methods which can foil existing adversarial attacks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset