Generation of Synthetic Electronic Health Records Using a Federated GAN

09/06/2021
by   John Weldon, et al.
19

Sensitive medical data is often subject to strict usage constraints. In this paper, we trained a generative adversarial network (GAN) on real-world electronic health records (EHR). It was then used to create a data-set of "fake" patients through synthetic data generation (SDG) to circumvent usage constraints. This real-world data was tabular, binary, intensive care unit (ICU) patient diagnosis data. The entire data-set was split into separate data silos to mimic real-world scenarios where multiple ICU units across different hospitals may have similarly structured data-sets within their own organisations but do not have access to each other's data-sets. We implemented federated learning (FL) to train separate GANs locally at each organisation, using their unique data silo and then combining the GANs into a single central GAN, without any siloed data ever being exposed. This global, central GAN was then used to generate the synthetic patients data-set. We performed an evaluation of these synthetic patients with statistical measures and through a structured review by a group of medical professionals. It was shown that there was no significant reduction in the quality of the synthetic EHR when we moved between training a single central model and training on separate data silos with individual models before combining them into a central model. This was true for both the statistical evaluation (Root Mean Square Error (RMSE) of 0.0154 for single-source vs. RMSE of 0.0169 for dual-source federated) and also for the medical professionals' evaluation (no quality difference between EHR generated from a single source and EHR generated from multiple sources).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset