Generating Representative Headlines for News Stories

by   Xiaotao Gu, et al.

of news articles are published online every day, which can be overwhelming for readers to follow. Grouping articles that are reporting the same event into news stories is a common way of assisting readers in their news consumption. However, it remains a challenging research problem to efficiently and effectively generate a representative headline for each story. Automatic summarization of a document set has been studied for decades, while few studies have focused on generating representative headlines for a set of articles. Unlike summaries, which aim to capture most information with least redundancy, headlines aim to capture information jointly shared by the story articles in short length, and exclude information that is too specific to each individual article.In this work, we study the problem of generating representative headlines for news stories. We develop a distant supervision approach to train large-scale generation models without any human annotation. This approach centers on two technical components. First, we propose a multi-level pre-training framework that incorporates massive unlabeled corpus with different quality-vs.-quantity balance at different levels. We show that models trained within this framework outperform those trained with pure human curated corpus. Second, we propose a novel self-voting-based article attention layer to extract salient information shared by multiple articles. We show that models that incorporate this layer are robust to potential noises in news stories and outperform existing baselines with or without noises. We can further enhance our model by incorporating human labels, and we show our distant supervision approach significantly reduces the demand on labeled data.


Generating abstractive summaries of Lithuanian news articles using a transformer model

In this work, we train the first monolingual Lithuanian transformer mode...

Unsupervised Story Discovery from Continuous News Streams via Scalable Thematic Embedding

Unsupervised discovery of stories with correlated news articles in real-...

Understanding news story chains using information retrieval and network clustering techniques

Content analysis of news stories (whether manual or automatic) is a corn...

Where Did the President Visit Last Week? Detecting Celebrity Trips from News Articles

Celebrities' whereabouts are of pervasive importance. For instance, wher...

Headline Generation: Learning from Decomposable Document Titles

We propose a novel method for generating titles for unstructured text do...

Story Disambiguation: Tracking Evolving News Stories across News and Social Streams

Following a particular news story online is an important but difficult t...

Please sign up or login with your details

Forgot password? Click here to reset