Generating Plausible Counterfactual Explanations for Deep Transformers in Financial Text Classification

10/23/2020
by   Linyi Yang, et al.
0

Corporate mergers and acquisitions (M A) account for billions of dollars of investment globally every year, and offer an interesting and challenging domain for artificial intelligence. However, in these highly sensitive domains, it is crucial to not only have a highly robust and accurate model, but be able to generate useful explanations to garner a user's trust in the automated system. Regrettably, the recent research regarding eXplainable AI (XAI) in financial text classification has received little to no attention, and many current methods for generating textual-based explanations result in highly implausible explanations, which damage a user's trust in the system. To address these issues, this paper proposes a novel methodology for producing plausible counterfactual explanations, whilst exploring the regularization benefits of adversarial training on language models in the domain of FinTech. Exhaustive quantitative experiments demonstrate that not only does this approach improve the model accuracy when compared to the current state-of-the-art and human performance, but it also generates counterfactual explanations which are significantly more plausible based on human trials.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

09/10/2020

On Generating Plausible Counterfactual and Semi-Factual Explanations for Deep Learning

There is a growing concern that the recent progress made in AI, especial...
07/20/2021

Uncertainty Estimation and Out-of-Distribution Detection for Counterfactual Explanations: Pitfalls and Solutions

Whilst an abundance of techniques have recently been proposed to generat...
09/03/2021

CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing Human Trust in Image Recognition Models

We propose CX-ToM, short for counterfactual explanations with theory-of ...
12/02/2021

Multi-Domain Transformer-Based Counterfactual Augmentation for Earnings Call Analysis

Earnings call (EC), as a periodic teleconference of a publicly-traded co...
06/14/2021

Counterfactual Explanations as Interventions in Latent Space

Explainable Artificial Intelligence (XAI) is a set of techniques that al...
05/11/2021

Counterfactual Explanations for Neural Recommenders

Understanding why specific items are recommended to users can significan...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.