Generating Optimal Grasps Under A Stress-Minimizing Metric
We present stress-minimizing (SM) metric, a new metric of grasp qualities. Unlike previous metrics that ignore the material of target objects, we assume that target objects are made of homogeneous isotopic materials. SM metric measures the maximal resistible external wrenches without causing fracture in the target objects. Therefore, SM metric is useful for robot grasping valuable and fragile objects. In this paper, we analyze the properties of this new metric, propose grasp planning algorithms to generate globally optimal grasps maximizing the SM metric, and compare the performance of the SM metric and a conventional metric. Our experiments show that SM metric is aware of the geometries of target objects while the conventional metric are not. We also show that the computational cost of the SM metric is on par with that of the conventional metric.
READ FULL TEXT