Generating Music using an LSTM Network

04/18/2018
by   Nikhil Kotecha, et al.
0

A model of music needs to have the ability to recall past details and have a clear, coherent understanding of musical structure. Detailed in the paper is a neural network architecture that predicts and generates polyphonic music aligned with musical rules. The probabilistic model presented is a Bi-axial LSTM trained with a kernel reminiscent of a convolutional kernel. When analyzed quantitatively and qualitatively, this approach performs well in composing polyphonic music. Link to the code is provided.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro