Generating High-Quality Emotion Arcs For Low-Resource Languages Using Emotion Lexicons
Automatically generated emotion arcs – that capture how an individual or a population feels over time – are widely used in industry and research. However, there is little work on evaluating the generated arcs in English (where the emotion resources are available) and no work on generating or evaluating emotion arcs for low-resource languages. Work on generating emotion arcs in low-resource languages such as those indigenous to Africa, the Americas, and Australia is stymied by the lack of emotion-labeled resources and large language models for those languages. Work on evaluating emotion arcs (for any language) is scarce because of the difficulty of establishing the true (gold) emotion arc. Our work, for the first time, systematically and quantitatively evaluates automatically generated emotion arcs. We also compare two common ways of generating emotion arcs: Machine-Learning (ML) models and Lexicon-Only (LexO) methods. By running experiments on 42 diverse datasets in 9 languages, we show that despite being markedly poor at instance level emotion classification, LexO methods are highly accurate at generating emotion arcs when aggregating information from hundreds of instances. (Predicted arcs have correlations ranging from 0.94 to 0.99 with the gold arcs for various emotions.) We also show that for languages with no emotion lexicons, automatic translations of English emotion lexicons can be used to generate high-quality emotion arcs – correlations above 0.9 with the gold emotion arcs in all six indigenous African languages explored. This opens up avenues for work on emotions in numerous languages from around the world; crucial not only for commerce, public policy, and health research in service of speakers of those languages, but also to draw meaningful conclusions in emotion-pertinent research using information from around the world (thereby avoiding a western-centric bias in research).
READ FULL TEXT