Generating Adversarial Examples in Chinese Texts Using Sentence-Pieces

12/29/2020 ∙ by Linyang Li, et al. ∙ 0

Adversarial attacks in texts are mostly substitution-based methods that replace words or characters in the original texts to achieve success attacks. Recent methods use pre-trained language models as the substitutes generator. While in Chinese, such methods are not applicable since words in Chinese require segmentations first. In this paper, we propose a pre-train language model as the substitutes generator using sentence-pieces to craft adversarial examples in Chinese. The substitutions in the generated adversarial examples are not characters or words but 'pieces', which are more natural to Chinese readers. Experiments results show that the generated adversarial samples can mislead strong target models and remain fluent and semantically preserved.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.