Generalized Stochastic Processes as Linear Transformations of White Noise

01/06/2021
by   R. Carrizo Vergara, et al.
0

We show that any (real) generalized stochastic process over ℝ^d can be expressed as a linear transformation of a White Noise process over ℝ^d. The procedure is done by using the regularity theorem for tempered distributions to obtain a mean-square continuous stochastic process which is then expressed in a Karhunen-Loève expansion with respect to a convenient Hilbert space. This result also allows to conclude that any generalized stochastic process can be expressed as a series expansion of deterministic tempered distributions weighted by uncorrelated random variables with square-summable variances. A result specifying when a generalized stochastic process can be linearly transformed into a White Noise is also presented.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro