Generalized smoothed particle hydrodynamics with overset methods in total Lagrangian formulations

05/18/2021
by   Huachao Deng, et al.
0

This study proposes a generalized coordinates based smoothed particle hydrodynamics (GSPH) method with overset methods using a Total Lagrangian (TL) formulation for large deformation and crack propagation problems. In the proposed GSPH, the physical space is decomposed into multiple domains, each of which is mapped to a local coordinate space (generalized space) to avoid coordinate singularities as well as to flexibly change the spatial resolution. The smoothed particle hydrodynamics (SPH) particles are then non-uniformly, e.g., typically in the boundary-conforming way, distributed in the physical space while they are defined uniformly in each generalized space similarly to the normal SPH method, which are numerically related by a coordinate transformation matrix. By solving a governing equation in each generalized space, the shape and size of the SPH kernel can be spatially changed in the physical space so that a spatial resolution is adaptively varied a priori depending on the deformation characteristics, and thus, a low-cost calculation with the less number of particles is achieved in complex shape structures.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset